

1 The Phenotypic Expression of Purple Body 2 (Pb) in Domestic Guppy Strains of *Poecilia* 3 *reticulata*

4
5 **Alan S. Bias¹ and Richard D. Squire²**

6
7 ¹Swordtail Guppy Breeder, Show Judge and Independent Researcher. Mailing address: P.O.
8 Box 1508, Lewisburg, West Virginia 24901, USA. orcid.org/0000-0002-9093-619X.
9 alansbias@aol.com

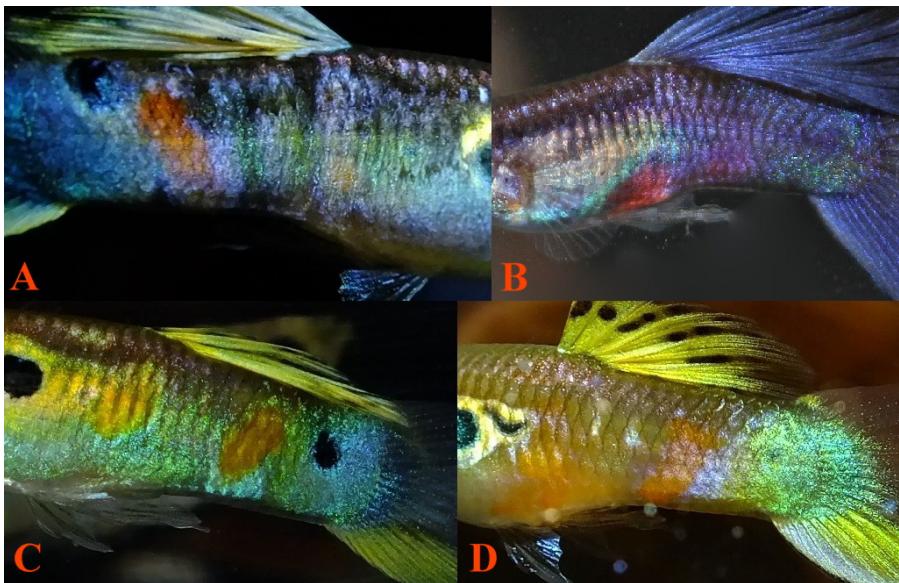
10
11 ²Biology Department (retired), University of Puerto Rico, Mayaguez campus, Mayaguez,
12 Puerto Rico, USA. Mailing address: P. O. Box 3227, Mayaguez, P.R., USA 00681-3227.
13 orcid.org/0000-0002-3916-0672. rickdsquire@gmail.com

14
15 **Abstract.** Modification of wild-type carotenoid orange and pteridine red coloration and spotting of male ornaments
16 in modern Domestic Guppy Strains (*Poecilia reticulata reticulata*) by the naturally occurring Purple Body gene (Pb)
17 has been long incorporated into their strains by Pedigree Stock Breeders. It is inherited as an autosomal
18 incompletely dominant trait. Its existence has allowed breeders to produce a vast array of Purple based phenotypes.
19 Photographic evidence demonstrates that Purple Body is a normal polymorphism in domestic guppies modifying
20 color pigmented regions. When combined with currently used mutant genes such as Albino, Blond, Golden, Asian
21 Blau, Coral Red, Magenta, Grass, Moscow, Pink, Platinum, Red Mosaic, Multicolor, and Full Red, startling new
22 phenotypes are created. The recently described Purple Body gene (Bias and Squire 2017a, 2017b, and 2017c) has
23 long been overlooked in research articles and little understood in breeder publications.

24 **Key Words:** Guppy color and modification, Domestic Guppy Strains, chromatophore, violet iridophore, blue
25 iridophore, violet-blue iridophore, xanthophore, xantho-erythrophore, Purple Guppy, Purple Body gene,
26 Metal Gold Iridophore, Purple Body gene, Vienna Emerald Green (VEG), Albino, Blond, Golden, Asian Blau,
27 Coral Red, Magenta, Grass, Moscow, Pink, Platinum, Red Mosaic, Multicolor, Full Red, *Poecilia reticulata*.

29
30 **Fig 1.** Purple Delta (Pb/Pb), photo courtesy of Terry Alley
31

32 **Introduction**


33 The Purple Body gene is located on an autosome. Breeding tests, involving this
34 modification of orange spotting, reveal this trait to have an incompletely dominant mode of
35 inheritance. As such a formal name and nomenclature of **Purple Body (Pb)** has been
36 suggested (Bias and Squire, 2017a). [Note: Hereafter Purple Gene, or Purple Body Gene
37 used interchangeably in reference.]

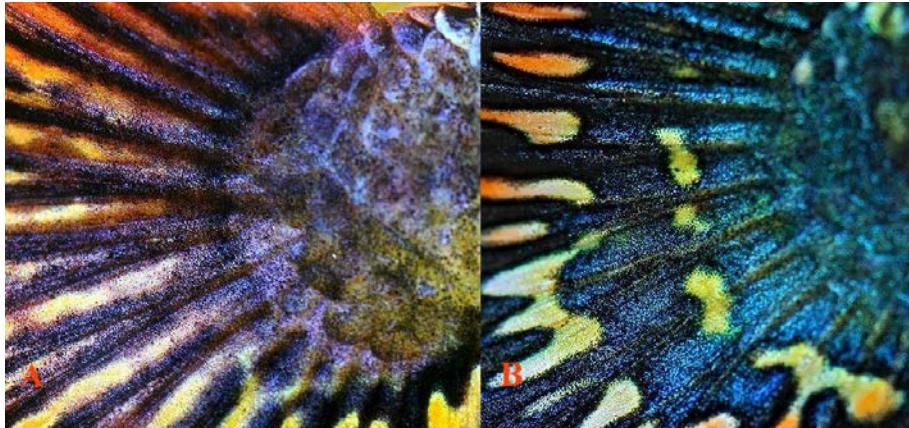
38 The intent of this brief paper is to provide spectral distinction, for ease in identification,
39 between Pb and non-Pb in many of the more commonly produced modern Domestic Guppy
40 strains. Emphasis is on the primary color traits, and several common pattern traits.
41 Groupings are presented by Grey (wild-type), autosomal and sex-linked modifiers. These
42 should not be considered inclusive of all known phenotypes. The number of strains and
43 phenotypes being produced for color and pattern continues to increase, and is a testament
44 to the efforts of both professional and amateur breeders around the world.

45 Autosomal incompletely dominant Pb, similar to identified autosomal recessives found in
46 *Poecilia reticulata*, is a modifier of total existing body color and pattern pigmentation
47 (involving xantho-erythrophores, structural iridophores and melanophores) in both males
48 and females. Purple Body is capable of modifying extent color and pattern found in any
49 Domestic Guppy strain.

50 Pb modification is most noticeable in Domestic Strains as a modifier of ornaments
51 comprised of orange carotenoid color pigment, in both males and females (**Fig 2**). Visually,
52 coloration is modified from a highly reflective orange to a “pinkish-purple” coloration in Grey
53 (“wild type” alleles *A*, *B*, *G*, *R*, and *ab*) corresponding to autosomal genes Albino (*a*, Haskins
54 and Haskins 1948), Blond (*b*, Goodrich 1944) Golden (*g*, Goodrich 1944), European Blau (*r*,
55 Dzwillo 1959) Asian Blau (*Ab*, Undescribed - see Bias 2015). It is also modified in various
56 ways when combined with autosomal genes Pink (*p*, Luckman 1990, Förster 1993, *pi*,
57 Kempkes 2007), Ivory (*I*, Tsutsui 1997, Magenta (*M*, undescribed), and Zebrinus (*Ze*,
58 Winge 1927). It combines as well with sex-linked genes such as Coral Red (*Co*, undescribed)
59 Y-linked, Grass (*Gra*, undescribed) X- and/or Y-linked, Moscow (*Mw*, Y-linked, Kempkes
60 2007]), Nigrocaudatus, X and/or Y-linked (*NiI*, Nybelin 1947] and *NiII*, Dzwillo 1959).
61 Platinum (*P*, undescribed) X- and/or Y-linked, Mosaic (*Mo*, Khoo and Phang 1999) X- and/or
62 Y-linked, Multicolor (no gene symbol) X-linked, and Schimmelpennig Platinum (*Sc*, described
63 as Buxeus by Kempkes 2007), Y-linked. Examples provided in this paper are primarily
64 limited to Delta Tail and Swordtail phenotypes.

65

66


67 **Fig 2. (A)** Homozygous Pb (*Pb/Pb*) modified ornaments, expressing removal of
68 xanthophores and increased violet-blue iridophores. **(B)** Homozygous Pb (*Pb/Pb*) modified
69 ornaments, expressing reduced xanthophores and increased violet-blue iridophores. **(C-D)**
70 non-Pb ornaments (*pb/pb*) expressing no alteration of xantho-erythrophores.
71

72 In heterozygous condition (*Pb/pb*) a distinct result is generated while in homozygous
73 condition (*Pb/Pb*) these results are further amplified. Pb is capable of pleiotropic effect on
74 all existing color and pattern elements at multiple loci. The purple phenotype has been
75 present in hobbyist stocks for decades, but has been largely unrecognized by many
76 breeders, except in the case of pure-bred all-purple strains.

77 Pb modification, zygosity dependent, removes certain classes of yellow-orange-red color
78 pigment over silver iridophores or white leucophores. Pb modifies "other existing" color in
79 both body and fins, thus suggestive of being a "full body" modifier, in homozygous
80 condition. Dark red pteridine color pigment does not seem to be modified by Purple Body in
81 fins lacking an underlying silver iridophore or white leucophore pattern. Modification by Pb
82 seems limited predominantly to wild-type orange color pigment; i.e. that which also
83 contains yellow carotenoids in addition to red pteridines, over an iridophore pattern.

84 Pb is always found in all-purple fish, but is not by itself sufficient to produce the all-
85 purple phenotype in heterozygous expression. Homozygous Pb expression results in the
86 further removal of xantho-erythrophores, in conjunction with both increased populations
87 and/or greater visibility of modified melanophores and naturally occurring violet and blue
88 iridophores. It is required for the production of the all-purple phenotype (**Fig 1 and Fig**
89 **2A**). Pb causes a large reduction of yellow color pigment cell populations (xanthophores).
90 It thus produces a modified pinkish-purple expression from what would have been orange
91 color pigment cells (xantho-erythrophores).

92 High resolution photography and microscopic study shows the co-existence of varying
93 populations of both violet and blue structural iridophores in all individuals, both male and
94 female (Bias and Squire 2017a, Pb Cellular Description; 2017b, Pb Microscopy Study;
95 2017c, Ocular Study). Violet and blue structural iridophores and melanophores are always
96 found in close proximity with one another, forming a type of chromatophore unit [**Note:**
97 *hereafter referenced as violet-blue (iridophores) for ease of discussion*]. Violet-blue
98 iridophores (**Fig 3A-B**) are most visible along the topline and in between regions lacking a
99 clearly defined silver iridophore pattern, often including the caudal-peduncle base. By
100 nature, yellow color pigment in Guppies is highly motile and mood dependent while red
101 color pigment is considered non-motile. Red color pigment (from erythrophores) is not
102 altered by Pb, or at least altered to a lesser degree, and a corresponding noticeable increase
103 in the visibility (possibly increased population levels) of structural violet and blue
104 iridophores is evident (**Fig 2A-B and Fig 3A-B**), resulting in the increased reflective
105 qualities of individuals.
106
107

108
109 **Fig 3. (A)** Pb/Pb modified caudal base expressing increased violet iridophores. **(B)** Non-Pb
110 pb/pb caudal base expressing balanced violet-blue iridophores, photos courtesy of Christian
111 Lukhaup.

112
113 When not masked by additional color and/or pattern traits, the identification of Purple
114 Body (*Pb*) in both wild-type and domestic males can be easily accomplished through visual
115 phenotypic observation. In non-Purple Body (*pb/pb*) individuals carotenoid orange color
116 pigment can be described as being vivid, bright orange spots structurally comprised of
117 densely packed yellow and orange xantho-erythrophores, normally extending to the very
118 edge of the spot. Though coverage over additional iridophore patterns may appear
119 incomplete.

120 Heterozygous Purple Body (*Pb/pb*) alters orange spots in select regions of the body and
121 in finnage to "pinkish-purple". Thus, it may not act as a "full body" modifier in
122 heterozygous form. Heterozygous Pb does not appear to greatly reduce visible structural
123 yellow color pigment cells over white leucophore or reflective clustered yellow cells, known
124 in breeder circles as Metal Gold (Mg) (*Undescribed* - Bias 2015), in body and finnage. A
125 slight increase in visibility of violet and blue iridophores is often detected. Additionally
126 noted is an increase and modification in existing melanophore structure and possibly
127 population numbers, as compared to heterozygous Pb. In non-solid colored strains, a
128 reduction in the number of yellow xanthophores results in a corresponding reduction in
129 overall size of individual spotting ornaments. This reveals a "circular ring" around remaining
130 color pigment produced by an underlying iridophore layer. This well-defined layer of
131 iridophores is an underlying precursor required for definition of shape over which color
132 pigment cells populate during maturation.

133 Homozygous Purple Body (*Pb/Pb*) alters all orange spots found in the body and in
134 finnage to "pinkish-purple", though modification may not be so readily visible in regions of
135 red solid color. It therefore should be considered a "full body" modifier. Homozygous Pb
136 can also produce a purple guppy phenotype. Homozygous Pb removes all visible yellow
137 color pigment over white leucophores, but not Mg in body and finnage. This in turn,
138 produces a dramatic increase in the visibility of wild-type violet-blue iridophores. The
139 number of melanophores does not appear to drastically increase in any given individual as
140 compared to homozygous Pb, but the size of the melanophores themselves was greater.

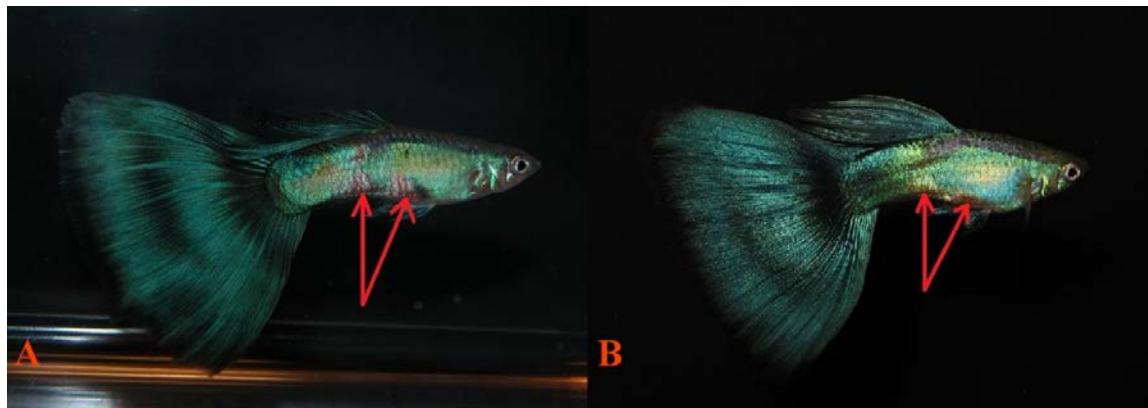
141 Heterozygous Pb exhibits partial reduction in collected xanthophores, and homozygous
142 Pb has a near complete removal of collected and clustered xanthophores. However, yellow
143 color cell populations consisting of isolated "wild-type" single cell xanthophores remain
144 intact.

145 Further descriptions of Guppy Traits are available for download in: Bias and
146 Groenewegen (2016, with periodic updates) *Poecilia reticulata*: Domestic Breeder Trait
147 Matrix Reference Guide.

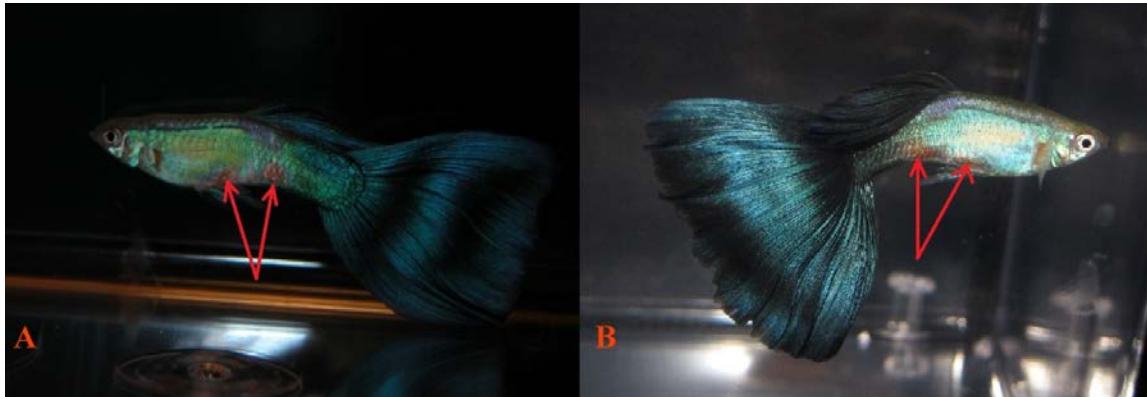
148 https://www.academia.edu/29928596/Poecilia_reticulata_Domestic_Breeder_Trait_Matrix_R
149 [eference_Guide](https://www.academia.edu/29928596/Poecilia_reticulata_Domestic_Breeder_Trait_Matrix_R) (last checked 1.21.2017).

150
151

152 **Phenotypic expression of Pb and non-Pb modification in**
153 **Grey (wild-type)**


154
155 **Fig 4.** (A) Purple Delta (Pb/pb) males. Results of a homozygous Green (pb/pb) male x
156 homozygous Purple (Pb/Pb) female breeding. (B) Homozygous Purple (Pb/Pb) male x
157 homozygous Green (pb/pb) female breeding. This type male will express as either blue or
158 purple depending upon the angle of light.

159


160
161 **Fig 5.** (A) Purple Delta Female (Pb/Pb) and (B) Green Delta Female (pb/pb), photos
162 courtesy of Bryan Chin. Note the dark violet-blue color of the caudal fin with Pb, green
163 reduced through xanthophore removal.

164

165
166 **Fig 6.** (A) Green Delta expressing Pb modified ornaments (Pb/pb). (B) Green Delta
167 (pb/pb), photos courtesy of Bryan Chin. Note the deepening of the orange body spots to
168 pinkish-purple with Pb through xanthophore removal (arrows).

169

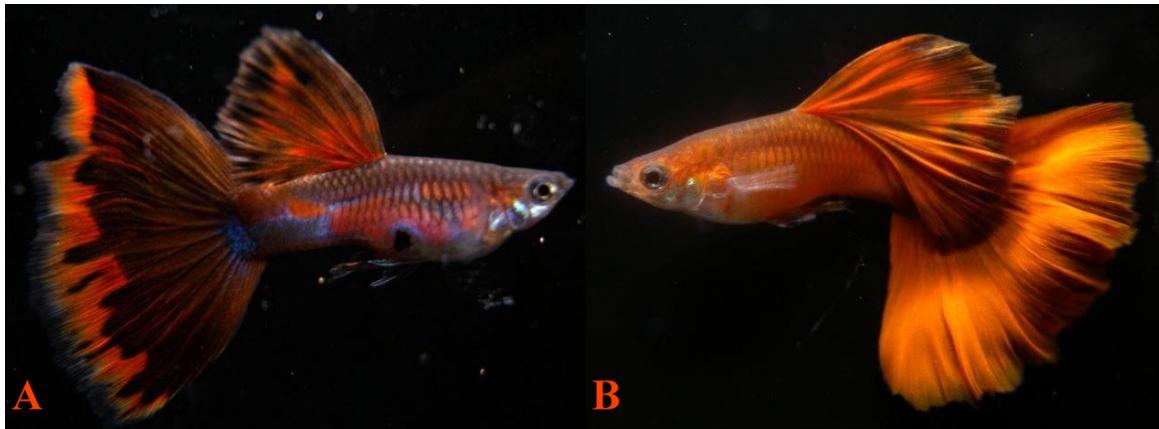
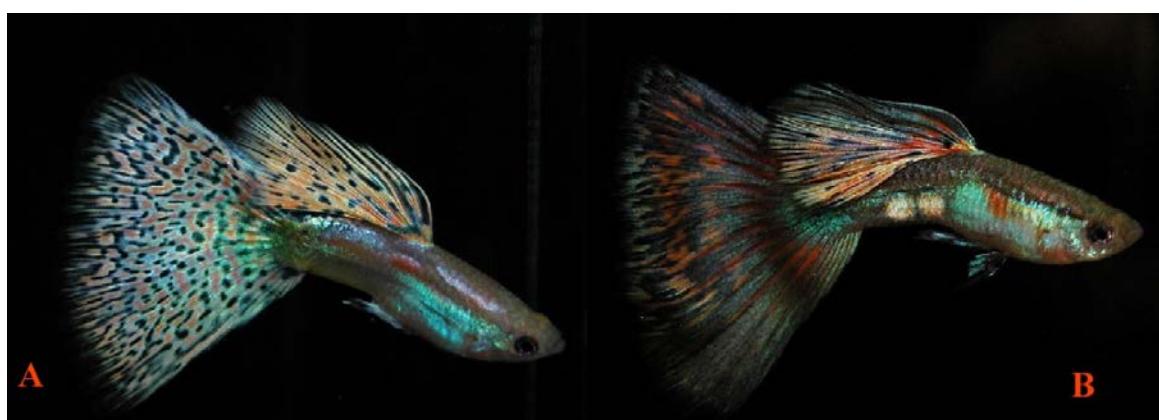
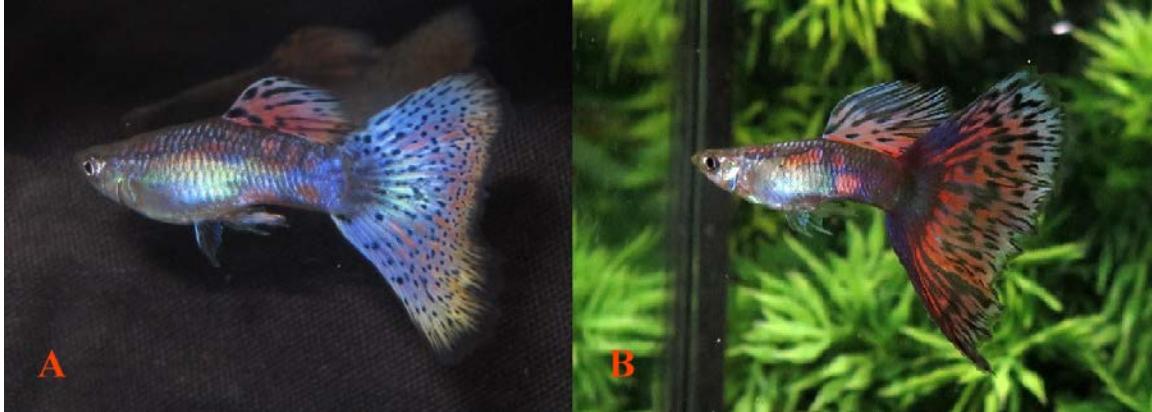

170
171
172
173
174

Fig 7. (A) Blue Delta expressing Pb modified ornaments (*Pb/pb*). (B) Blue Delta (*pb/pb*), photos courtesy of Bryan Chin. Note the deepening of the orange body spot to pinkish-purple with Pb through xanthophore removal (arrows).

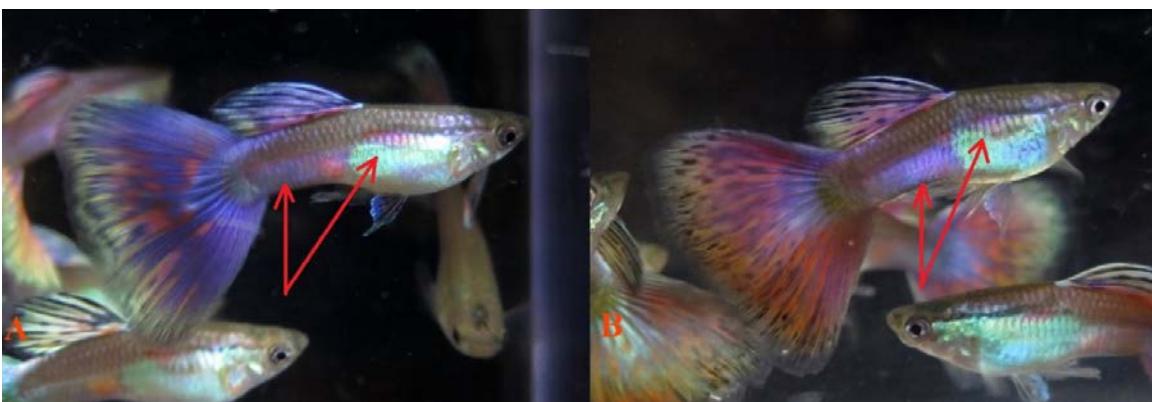


175
176
177
178
179
180
181
182
183

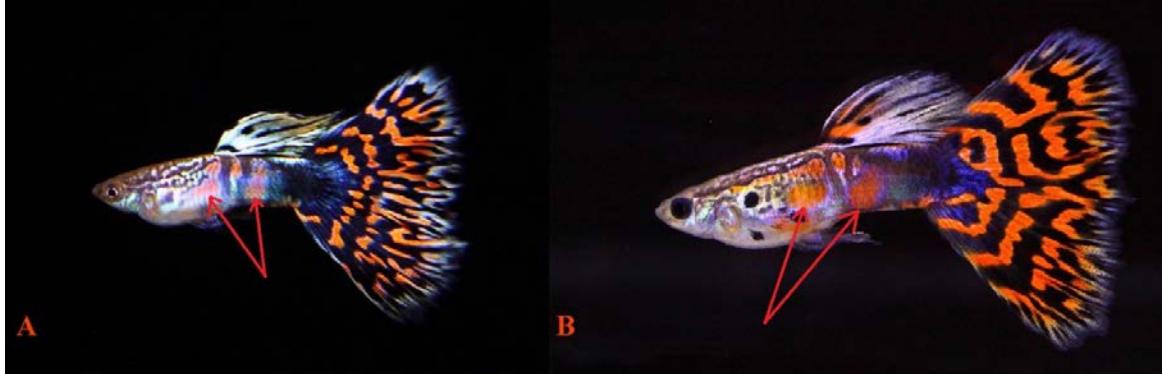

Fig 8. (A) Purple Moscow (*Mw + MBAG*) Delta expressing Pb modified ornaments (*Pb/Pb*). (B) Blue-Green Moscow (*Mw + MBAG*) Delta expressing Pb modified ornaments (*Pb/pb*). Note violet-blue iridophore based pattern and reduction of xanthophores in heterozygous Pb condition. Unmodified anterior orange body spot partially masked by MBAG in peduncle (arrows). (C) Green Moscow (*Mw + MBAG*) Delta (*pb/pb*). Note absence of Pb effects. Unmodified anterior and posterior orange body spots partially masked in peduncle by MBAG (arrows), photos courtesy of Igor Dusanic.


184
185 **Fig 9. (A)** Red Delta expressing Pb modified ornaments (*Pb/pb*). **(B)** Red Delta (*pb/pb*),
186 photos courtesy of 黃啟閔 Kiddo Huang. Note how Pb darkens deep orange to dark red
187 through xanthophore removal, and modifies body spots from orange to pinkish-purple with
188 increase violet-blue iridophore expression.
189

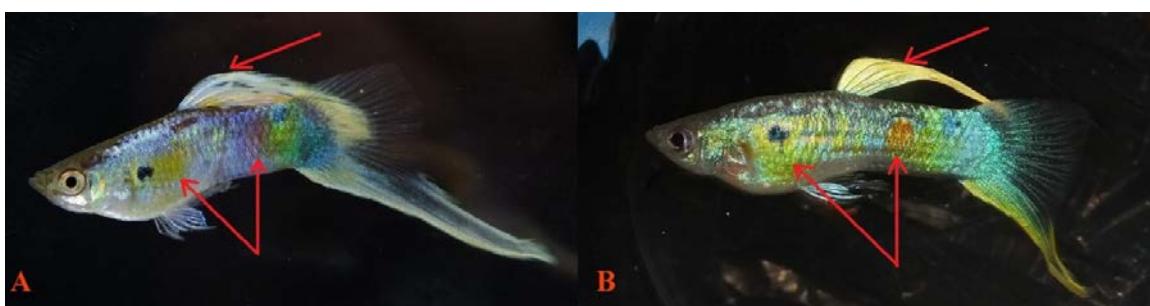
190
191 **Fig 10. (A)** Half Black (*Nill*) Red Delta expressing Pb modified ornaments (*Pb/pb*). **(B)**
192 Half Black (*Nill*) Red Delta (*pb/pb*), photos courtesy of Bryan Chin and Cheng-Hsien Yang.
193 Note the darker red replacing lighter orange-red by Pb through xanthophore removal.
194 Peduncle and topline expresses increased iridophores in Pb, and dorsal shows reduction of
195 xanthophores revealing violet-blue iridophores (arrow).
196


197
198 **Fig 11. (A)** Red Multi-Color (*Pb/pb*) Delta expressing Pb modified ornaments. Note the
199 change of orange body spots to pinkish-purple from xanthophore removal, while darker red
200 is unaffected with Pb. **(B)** Red Multi-Color Delta (*pb/pb*), photos courtesy of Bryan Chin.
201

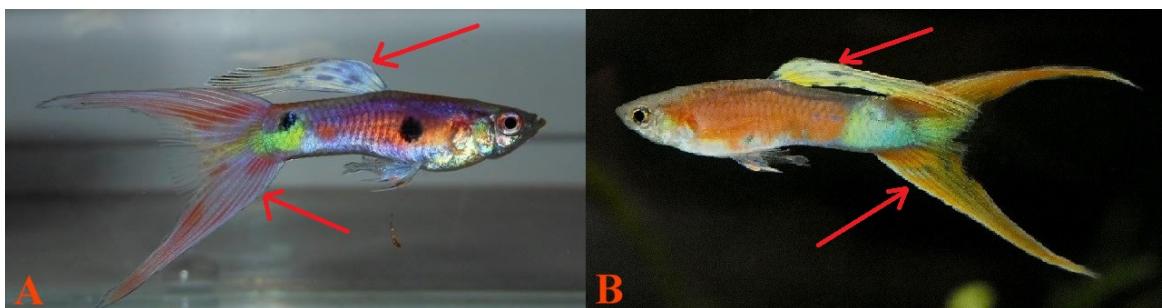
202
203 **Fig 12. (A)** Purple Multi-Color (Pb/Pb). **(B)** Red Multi-Color Deltas expressing Pb modified
204 ornaments (Pb/Pb), photos courtesy of Bryan Chin. Note the erythrophores show partial Pb
205 modification in both males' finnage and the violet coloration in the fish to the left. Genes
206 other than Pb are responsible for some of these differences. Some orange spots are
207 modified to pinkish-purple. Pb reduces sex-linked xanthophores in dorsal and caudal,
208 revealing white leucophores (Le) in finnage. There is a slight increase in violet-blue
209 structural color in body.
210



211
212 **Fig 13. (A)** Purple Multi-Color Delta (Pb/Pb). **(B)** Red Multi-Color Deltas expressing Pb
213 modified ornaments (Pb/Pb), photos courtesy of Bryan Chin. Again, additional genes are
214 involved here. Orange spots are modified to pinkish-purple. Pb reduces sex-linked
215 xanthophores in dorsal and caudal, revealing white leucophores (Le) in finnage. There is a
216 slight increase in violet-blue structural color in body.
217



218
219 **Fig 14. (A)** Purple Multi-Color (Pb/Pb). **(B)** Red Multi-Color Deltas expressing Pb modified
220 ornaments (Pb/Pb), photos courtesy of Bryan Chin. Orange spots are modified to pinkish-


221 purple, and increased violet-blue iridophores (arrows). Some anterior Metal Gold (*Mg*)
222 remains over blue iridophores and in the VEG peduncle spot.
223

224
225 **Fig 15.** (A) Red Mosaic Delta (*Pb/Pb* or *Pb/pb*) expressing Pb modified ornaments. (B)
226 Red Mosaic Delta (*pb/pb*), photos courtesy of Kevin and Karen Yang. Pb converts lighter
227 carotenoid orange to pinkish-purple on the body (arrows), but the effect on the darker
228 pteridine red in caudal fin is less pronounced. Pb reduces sex-linked xanthophores in dorsal
229 and caudal, revealing white leucophores (*Le*) in finnage. There is a slight increase in violet-
230 blue structural color in body.
231

232
233 **Fig 16.** (A) Vienna Lowersword expressing Pb modified ornaments (*Pb/Pb*). (B) Vienna
234 Lowersword (*pb/pb*). Green coloration is the product of yellow xanthophores over blue
235 iridophores. Note that when Pb reduces the yellow, it reduces green as well. Posterior
236 orange spots are modified to pinkish-purple (arrows). There is increased expression of
237 violet-blue iridophores while collected sex-linked xanthophores are removed and clustered
238 Metal Gold (*Mg*) are only reduced by Pb (arrow).
239

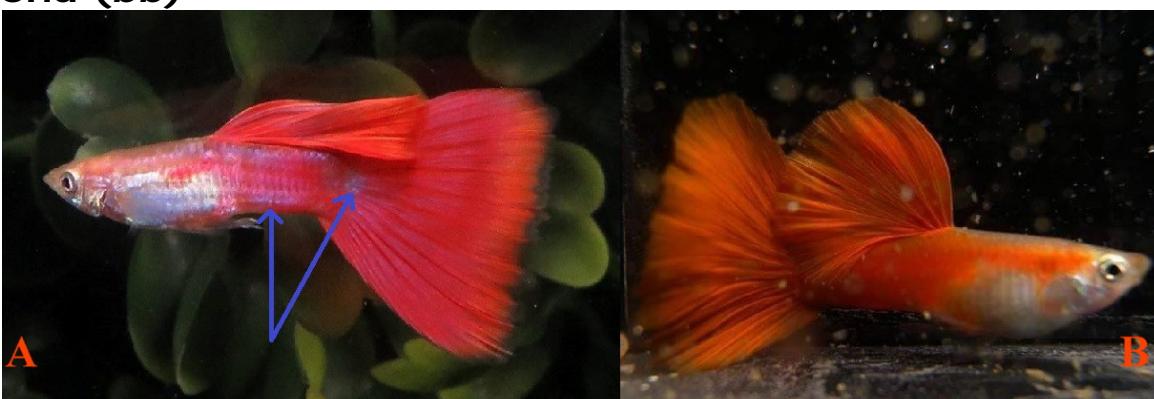
240
241 **Fig 17.** (A): Coral Red (*Co*) Doublesword expressing Pb modified ornaments (*Pb/Pb* or
242 *Pb/pb*). (B) Coral Red (*Co*) Doublesword (*pb/pb*), photos courtesy of Krisztián Medveczki
243 and Gary Lee. Note how Pb changes orange to deep red. Pb removes sex-linked
244 xanthophores in the dorsal and caudal, leaving only white leucophores (*Le*), as no sex-
245 linked erythrophores are present. Some orange spots are modified to pinkish-purple, and

246 there is proliferation of iridophores in the body. Sex-linked collected yellow pigment is
247 removed from both caudal and dorsal (arrow). There is a heavy increase in violet-blue
248 structural color in body, but not finnage, as Pb modification of erythrophores is minimal.
249

250
251 **Fig 18.** **(A)** Magenta (*M*) Delta expressing Pb modified ornaments (*Pb/pb*). **(B)** Magenta
252 (*M*) Delta (*pb/pb*), photos courtesy of Krisztián Medveczki. Note how Pb converts orange to
253 red by reduction of xanthophores (arrows) and deepens and expands the violet-blue
254 iridophore coloration. Orange spots are modified to pinkish-purple, and increased
255 expression of violet-blue iridophores by xanthophore reduction (arrows).
256

257
258 **Fig 19.** **(A)** Purple Panda Moscow (*Mw + pp*) Roundtail expressing Pb modified ornaments
259 (*Pb/Pb*). **(B)** Panda Moscow (*Mw + pp*) Roundtail (*pb/pb*). Green is replaced by purple
260 with Pb, by removal of xanthophores with increased expression of violet-blue iridophores.
261

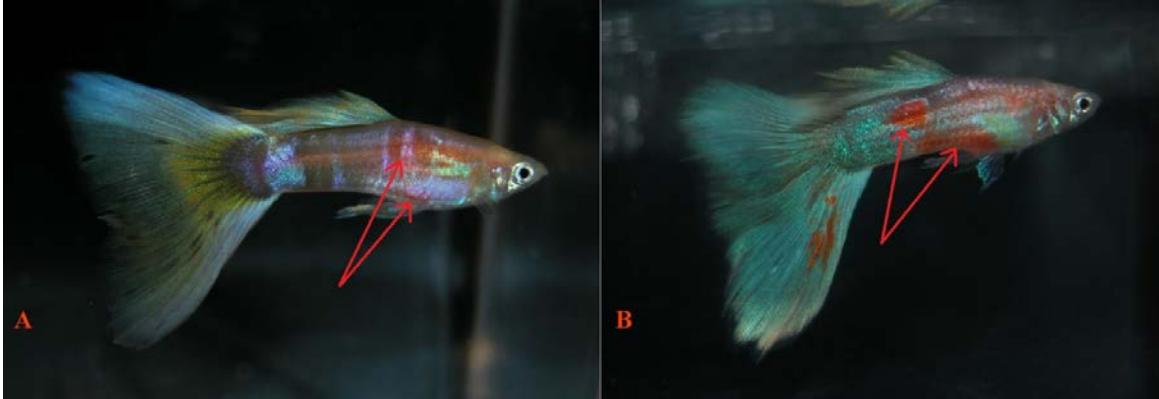
262 **Phenotypic expression of Pb and non-Pb modification in 263 Albino (*aa*)**


264
265 **Fig 20.** **(A)** Full Red Albino (*aa*) Delta expressing Pb modified ornaments (*Pb/pb*). **(B)** Full
266 Red Albino (*aa*) Delta (*pb/pb*), photos courtesy of 曾皇傑 Tseng Huang Chieh.
267 Melanophores are removed by Albino. **(A)** Orange red is changed to dark red by Pb through

268 xanthophore removal, with proliferation of violet-blue iridophores visibly modified to
269 pinkish-purple (arrows).
270

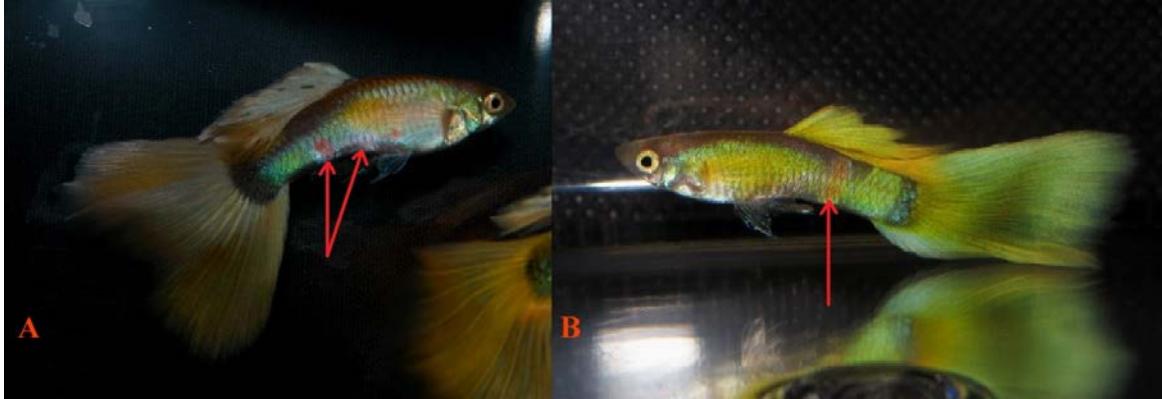
271
272 **Fig 21. (A)** Albino (*aa*) Delta expressing Pb modified ornaments (*Pb/Pb* or *Pb/pb*), photo
273 courtesy of Benson Liu. **(B)** Albino (*aa*) Lowersword (*pb/pb*). Melanophores are removed by
274 Albino, though dendritic pattern remains. Posterior orange spots are modified to pinkish-
275 purple, with increased expression of violet-blue iridophores.
276

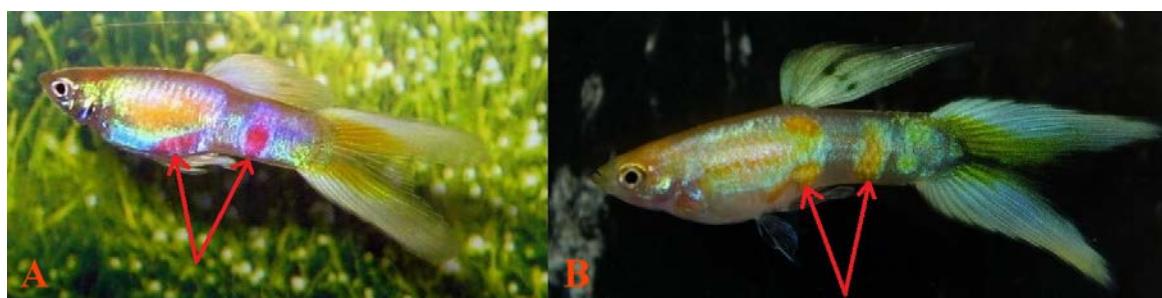
277 **Phenotypic expression of Pb and non-Pb modification in** 278 **Blond (bb)**



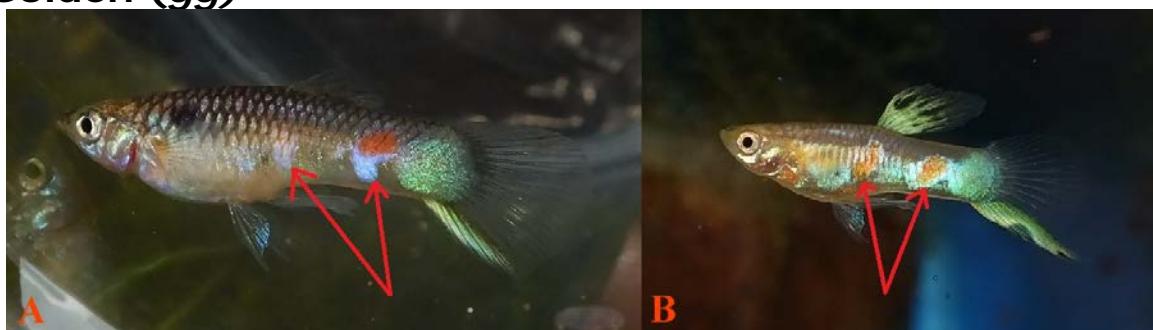
279
280 **Fig 22. (A)** Blond (*bb*) Red Delta expressing Pb modified ornaments (*Pb/pb* or *Pb/Pb*). **(B)**
281 Blond (*bb*) Red Delta (*pb/pb*), photos courtesy of Bryan Chin and 黃啟閔 Kiddo Huang.
282 Removal of xanthophores and a proliferation of violet-blue iridophores modifies orange to a
283 darker red and spots are modified to pinkish-purple (arrows).
284

285


286 **Fig 23.** Blond (*b*) Red Multi-Color Delta expressing Pb modified ornaments (*Pb/pb*), photo
287 courtesy of Bryan Chin. Blond reduces melanophore size. Posterior orange is converted to
288 pinkish-purple by Pb (arrows), with increased expression of violet-blue iridophore structural
289 color. Pb reduces sex-linked xanthophores in dorsal and caudal, revealing white
290 leucophores (*Le*) in finnage.
291


292 **Fig 24. (A)** Blond (*bb*) Multi-Color Delta expressing Pb modified ornaments (*Pb/pb*).
293 Heterozygous Pb converts some orange spots over Zebrinus (*Ze*) to pinkish-purple (arrows)
294 with increased purple violet iridophores, some anterior orange remains. Pb reduces sex-
295 linked xanthophores in dorsal and caudal fins, revealing white leucophores (*Le*) in finnage.
296 There is a slight increase in violet-blue structural color in body. **(B)** Blond (*bb*) Multi-Color
297 Delta (*pb/pb*), photos courtesy of Bryan Chin. Blond reduces melanophore size. There is no
298 modification to orange spotting ornaments (arrows) comprised of xantho-erythrophores.
299
300

301 **Fig 25. (A)** Blond (*bb*) Vienna Lowersword expressing Pb modified ornaments (*Pb/Pb*).
302 **(B)** Blond (*bb*) Vienna Lowersword (*pb/pb*). Blond reduces melanophore size. Orange is
303 converted to pinkish-purple by xanthophore removal (arrows), green is almost eliminated
304 by Pb.
305



306
307 **Fig 26.** (A) Blond (*bb*) Schimmelpennig Platinum (*Sc*) Delta expressing Pb modified
308 ornaments (*Pb/Pb*). (B) Blond (*bb*) Schimmelpennig Platinum (*Sc*) Delta (*pb/pb*), photos
309 courtesy of Bryan Chin. Blond reduces melanophore size. Orange is converted to pinkish-
310 purple by xanthophore removal (arrows), green is eliminated by Pb. Pb reduces sex-linked
311 xanthophores in dorsal and caudal fins, revealing white leucophores (*Le*) in finnage. Metal
312 Gold (*Mg*) remains in body and finnage. There is a slight increase in violet-blue structural
313 color in body.
314

315
316 **Fig 27.** (A) Blond (*bb*) Schimmelpennig Platinum (*Sc*) Doublesword expressing Pb modified
317 ornaments (*Pb/Pb*). (B) Blond (*bb*) Schimmelpennig Platinum (*Sc*) Doublesword (*pb/pb*).
318 Blond reduces melanophore size. Orange is converted to pinkish-purple by xanthophore
319 removal (arrows), green is eliminated by Pb. Note that the large platinum shoulder area,
320 comprised of clustered Metal Gold (*Mg*) xanthophores, is still present in homozygous Pb. Pb
321 reduces sex-linked xanthophores in dorsal and caudal, revealing white leucophores (*Le*) in
322 finnage. There is a slight increase in violet-blue structural color in body.
323

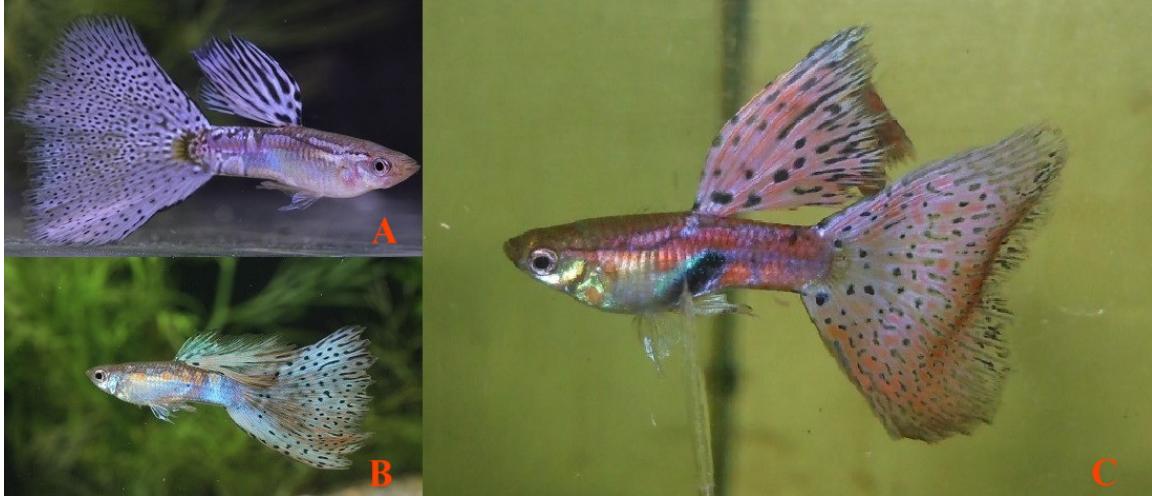
324 **Phenotypic expression of Pb and non-Pb modification in 325 Golden (*gg*)**

326
327 **Figure 28.** (A) Golden (*gg*) Vienna Lowersword expressing Pb modified ornaments
328 (*Pb/Pb*). (B) Golden (*gg*) Vienna Lowersword (*pb/pb*). Melanophores are reduced and

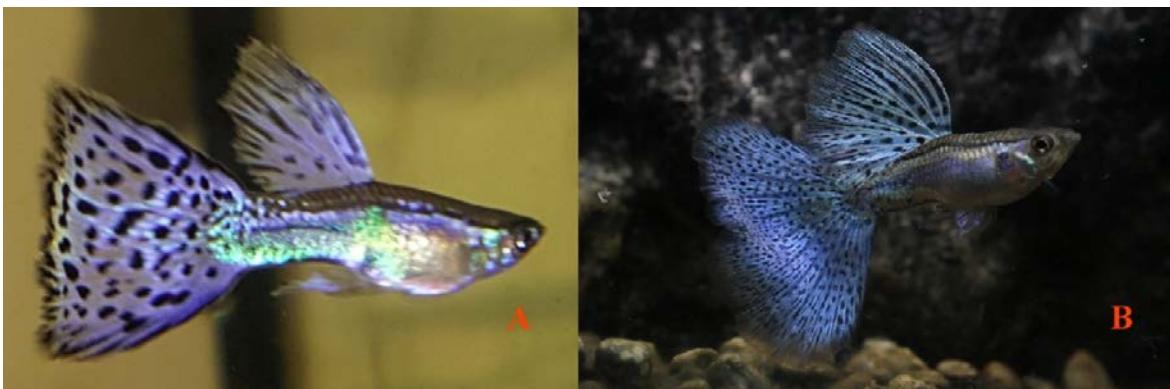
329 collected by Golden. Orange is converted to pinkish-purple by Pb by xanthophore removal
330 (arrows), pale blue is deepened to violet, green is reduced. Pb reduces sex-linked
331 xanthophores in dorsal and caudal, revealing white leucophores (*Le*) in finnage. Metal Gold
332 (*Mg*) remains in body and finnage. Slight increase in violet-blue structural color in body.
333

334
335 **Fig 29. (A)** Golden (gg) Purple Panda Moscow (*Mw* + *pp*) Roundtail expressing Pb modified
336 ornaments (*Pb/Pb*). **(B)** Golden (gg) Panda Moscow (*Mw* + *pp*) Roundtail (*pb/pb*). Green is
337 replaced by purple with Pb, through xanthophore removal and proliferation of violet-blue
338 iridophores (arrow). Reduction in melanophore numbers, especially ectopic, reduces dark
339 peduncle coloration (arrow).
340

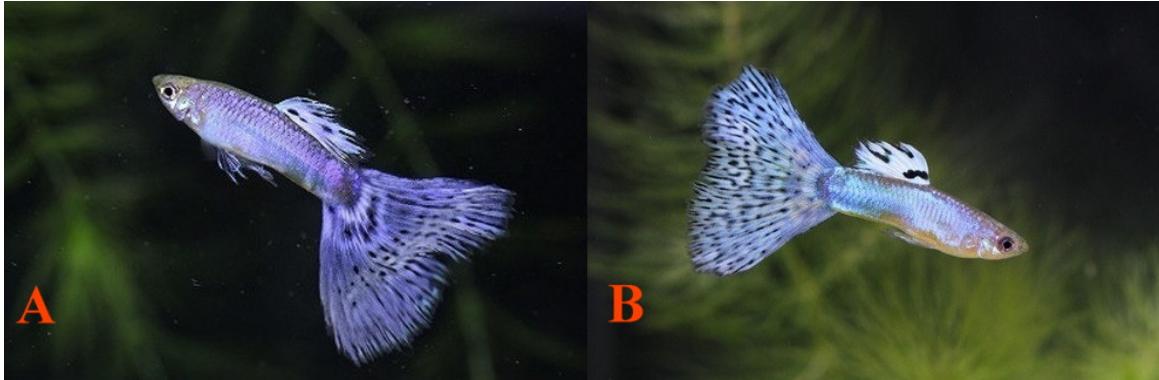
341 **Phenotypic expression of Pb and non-Pb modification in** 342 **Asian Blau (Ab)**


343
344 **Fig 30. (A)** Asian Blau (Ab) Vienna Lowersword expressing Pb modified ornaments (*Pb/Pb*).
345 **(B)** Asian Blau (Ab) Vienna Lowerswords (*pb/pb*). Orange is converted to pinkish-purple by
346 Pb xanthophore removal (arrows). Erythrophores are further removed by Ab revealing
347 modified violet-blue iridophores (arrows).
348

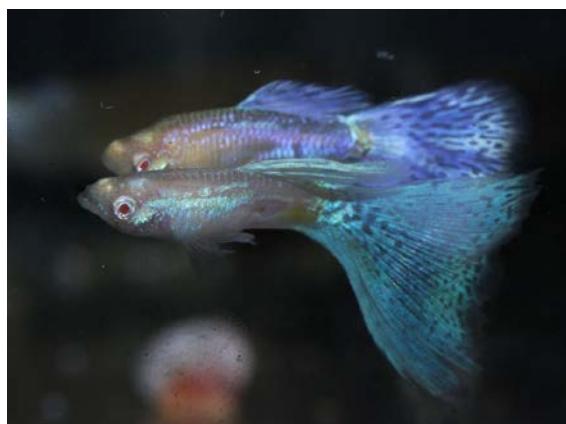
349


350 **Fig 31. (A)** Asian Blau (*Ab*) Ivory (*ii*); i.e. Lavender Coral Red (*Co*) Doublesword
351 expressing Pb modified ornaments (*Pb/Pb* or *Pb/pb*), photo courtesy of Taketoshi Sue.
352 Orange is converted to pinkish-purple by Pb. Asian Blau removes orange and Ivory
353 removes yellow-orange revealing modified violet-blue iridophores and white leucophores.
354 **(B)** Asian Blau (*Ab*) Coral Red (*Co, pb/pb*). Doublesword Orange converted to pinkish-
355 purple by Pb, and removed by Ab revealing underlying leucophores and modified
356 iridophores.

357



358 **Fig 32. (A)** Asian Blau (*Ab*) Ivory (*ii*); i.e. Lavender Grass Delta expressing Pb modified
359 ornaments (*Pb/pb*). Orange converted to pinkish-purple by Pb. Asian Blau removes orange
360 and Ivory removes yellow-orange revealing modified violet-blue iridophores and white
361 leucophores. **(B)** Red Grass Delta expressing orange ornaments (*pb/pb*). Orange
362 converted to pinkish-purple by Pb, photos courtesy of Taketoshi Sue. **(C)** Pink Grass Delta
363 expressing Pb modified ornaments (*Pb/pb*). Orange converted to pinkish-purple by Pb,
364 photo courtesy of Gyula Pasaréti.


366

367 **Figure 33. (A)** Asian Blau (*Ab*) Purple Grass Delta expressing Pb modified ornaments
368 (*Pb/pb*). Orange converted to pinkish-purple by Pb. Asian Blau removes orange revealing
369 modified violet-blue iridophores. Photo courtesy of Leanne Shore. **(B)** Asian Blau (*Ab*) Blue
370 Grass Delta (*pb/pb*). Orange converted to pinkish-purple by Pb. Asian Blau removes
371 orange revealing modified blue iridophores. Photo courtesy of Kevin Yao.

373
374 **Figure 34.** (A) Asian Blau (*Ab*) Ivory (*ii*); i.e. Lavender Coral Red (*Co*) Grass Delta
375 expressing *Pb* modified ornaments (*Pb/pb*). Orange converted to pinkish-purple by *Pb*.
376 Asian Blau removes orange and Ivory removes yellow-orange revealing modified violet-blue
377 iridophores and white leucophores. (B) Asian Blau (*Ab*) Coral Red (*Co*) Blue Grass Delta
378 (*pb/pb*). Orange is converted to pinkish-purple by *Pb*. Asian Blau removes orange
379 revealing modified blue iridophores and minimal Metal Gold (*Mg*). Photos courtesy of
380 Taketoshi Sue.
381

382
383 **Fig 35. Top:** Asian Blau (*Ab*) Albino (*aa*) Ivory (*ii*); i.e. Albino Lavender Grass Delta
384 expressing *Pb* modified ornaments (*Pb/Pb* or *Pb/pb*). Albino removes melanophores.
385 Orange converted to pinkish-purple by *Pb*. Asian Blau removes orange and Ivory removes
386 yellow-orange revealing modified violet-blue iridophores. **Bottom:** Asian Blau (*Ab*) Albino
387 (*aa*); i.e. Albino Blue Grass Delta. Albino (*aa*) removes melanophores. Asian Blau (*Ab*)
388 removes orange revealing modified blue iridophores and Metal Gold (*Mg*). Photos courtesy
389 of Taketoshi Sue.
390

391
392 **Fig 36. (A)** Asian Blau (*Ab*) Blond (*bb*) Vienna Lowersword expressing *Pb* modified
393 ornaments (*Pb/Pb*). **(B)** Asian Blau (*Ab*) Blond (*bb*) Vienna Lowersword (*Pb/pb*). Blond

394 reduces melanophores. Orange converted to pinkish-purple by Pb, by xanthophore removal
395 (arrows). Asian Blau removes orange revealing modified light violet-blue iridophores.
396

397 **Discussion and Conclusions**

398 The genes *kita*, *kitla*, *csf1ra*, and *csf1rb* have been identified in Guppies (Kottler 2013;
399 2015).

400
401 *Kita* is a required precursor gene in the development of early forming motile
402 melanophores (*kita*-dependent) in Guppies. *Kita* is not required for development of
403 genetically distinct late forming, possibly non-motile, melanophores (*kita*-independent).
404 Together, they produce the reticulated scale pattern found in both sexes; wild and
405 domestic.

406 *Csf1ra* is a required precursor gene (colony-stimulating factor 1 receptor) in the
407 development and formation of xantho-erythrophores. In Guppies *csf1ra* is not required in
408 development of late forming, possibly non-motile, melanophores (*kita*-independent).
409 Together, they contribute to non-defective ornaments of wild-type males.

410 Interactions between late forming melanophores in conjunction with xantho-
411 erythrophores affect Domestic Guppy strain ornaments in both sexes. Thus, functional *kita*
412 and *csf1ra* are found in non-defective ornaments of Domestic strains in both sexes.

413 Purple body removes certain classes of yellow-orange-red color pigment over silver
414 iridophores or white leucophores. Dark red pteridine color pigment does not seem to be
415 modified by Purple Body in fins lacking an underlying silver iridophore or white leucophore
416 pattern. Modification by Pb seems limited predominantly to wild-type orange color
417 pigmented xantho-erythrophores; i.e. those which also contain yellow-orange carotenoids in
418 addition to red pteridines, over an iridophore pattern. Heterozygous Purple Body (*Pb/pb*)
419 alters orange spots in select regions of the body and in finnage to "pinkish-purple".

420 Heterozygous Pb does not appear to greatly reduce visible structural yellow color
421 pigment cells over white leucophore or reflective clustered yellow cells in body and finnage.
422 A slight increase in visibility of violet and blue iridophores is often found. Homozygous Pb
423 expression results in a further removal of xantho-erythrophores, in conjunction with both
424 increased populations and/or greater visibility of modified melanophores and naturally
425 occurring violet and blue iridophores. *Pb/Pb* plus an unidentified additional genetic
426 component is required for production of the all-purple phenotype.

427 When Pb is combined with any of the autosomal or sex-linked mutants well known to
428 breeders, Albino (*aa*), Blond (*bb*), Golden (*gg*), and Asian Blau (*Ab*), further combined
429 effects occur. The modifications of each of these genes on "wild-type" grey and resulting
430 co-expressions with the Purple Body (*Pb*) gene are briefly discussed as follows:
431

432 **Autosomal Genes With References**

433 **Albino** (*aa*). Recessive. Also known as Real Red Eye Albino (*RREA*) or (Type B). There is
434 an inability to produce black melanophores in the body and finnage. It eliminates all classes
435 of melanophores; dendritic, corolla and punctate. Therefore melanin is absent as well.
436 Albino is epistatic to both the Blond and Golden genes; thus mutant alleles of each may be
437 found in the albino genotype (e.g., *aa Bb*, *aa bb*, *aa Gg*, *aa gg*, etc.). In Albino, the result
438 when combined with Pb is similar to that with Blond, except that the melanin is completely
439 absent and the colors appear even paler (except when a different pigment cell is over
440 expressed as in full red). Red can appear deepened and "darker" when Pb is present.

441 **Blond** (*bb*). Recessive. It has been identified as a defective gene mutation in adenylate
442 (adenylyl) cyclase 5 (*adcy5*; *ac5*), and mapped to Linkage Group (LG) 2 (Kottler et al.
443 2015). It is also known to pedigree breeders as IFGA Gold, Asian Gold, European Blond.
444 This mutation produces a near normal number of black melanophores of all types; Dendritic,

445 Corolla and Punctate. However, the size of each is greatly reduced and the structure
446 modified as compared to "wild-type" grey. According to published results Blond is not
447 linked to Golden. This gene should be viewed not as a suppressor of melanophores, but
448 rather one that alters melanophore size and shape.

449 When Pb is combined with homozygous blond (*bb*), a violet-blue sheen co-expresses
450 with often paler and less intense xantho-erythrophores, resulting from the reduction in
451 melanophore size. The reflective qualities of xantho-erythrophores in Blond are determined
452 by the composition of underlying structural colors (iridophores are more reflective and
453 leucophores are less reflective) and angles at which crystalline platelets reside.

454 **Golden** (*gg*). Recessive. The Golden gene is a defective ortholog of *kita* (Kottler et al.
455 2013). *Kita* has been mapped on Guppy autosomal LG 4 (Tripathi et al. 2008). It is also
456 known to pedigree breeders as European Gold, IFGA Bronze or Asian Tiger. This gene
457 produces a reduced amount of black melanophores (approximately 50%) of all types;
458 dendritic, corolla and punctate. However, the size of dendritic and corolla melanophores is
459 greatly increased and the collection of corolla melanophores is concentrated into "clumps"
460 or "islands" of melanophores along the scale edges. Males and females lack skin
461 melanophores at birth, but they develop with maturity. Scale edging will become lighter
462 with a higher inbreeding co-efficient; i.e. long-term Golden x Golden breeding's. This
463 suggests that there are non-allelic modifier genes affecting the Golden phenotype.

464 According to published results Golden and Blond are in different linkage groups and
465 assumedly different chromosomes and thus *can not* be alleles of each other or linked to
466 each other. This gene should be viewed as a suppressor of melanophore population
467 numbers.

468 In Pb plus Golden (*gg*), the effect is similar to Blond, except that melanophores are
469 present at higher frequencies and with a modified distribution. As a result, the colors while
470 paler than in grey are not as pale as in Blond.

471
472 **Asian Blau** (*Ab*). Incompletely Dominant. Also known to pedigree breeders as (*r2*) Europe
473 and (*Rr*) Asia. [Note: The use of lower case "r" violates the accepted genetic use of
474 symbols since this is not a recessive gene, this usage came about prior to identification of
475 *Ab* as a second erythrophore defect.] In heterozygous condition red color pigment is
476 removed, while collected yellow color pigment and clustered Metal Gold (*Mg*) is little
477 affected. This produces an iridophore based phenotype. Snakeskin patterns degrade in
478 both heterozygous and homozygous expression, as a result of disruption of melanophore
479 structure or melanin content. The Purple (Violet) sheen found above the lateral line of both
480 males and females is removed.

481 In homozygous condition certain black melanophores are removed along with red and
482 yellow color pigments. In homozygous condition finnage may be reduced in size, but the
483 genes are still present in the genotype for normal finnage. An outcross of homozygous *Ab*
484 will produce the expected finnage in *F*₁ offspring. [Note: As there are distinct types of red
485 color pigment (carotenoid and pteridine) present in both body and finnage, removal may
486 not be complete, as in a red "Old Fashioned" shoulder stripe. A very faint "red shoulder
487 stripe" is sometimes visible.]

488 The result when Asian Blau is combined with Pb can range from highly reflective violet-
489 blue to non-reflective violet-blue in combination with additional genes that remove and/or
490 reduce iridophores or alter angles of crystalline platelets.

491
492 **European Blau** (*r* or *r1*); also (*eb*). Recessive. Both *csf1ra* and *csf1rb* genes have been
493 identified in Guppies, and are the result of an ancestral genome duplication event that
494 produced four copies of each gene rather than two. (The guppy is an ancestral tetraploid.)
495 In many fish species one or the other pair of some genes has been lost to reduce the total
496 gene dosage back to a "diploid level" of two rather than four copies. In some other cases,

497 the two genes diverge from each other and assume different functions. The European Blau
498 gene is a defective ortholog of *csf1ra*. Expression levels of *csf1rb* were not upregulated to
499 compensate for the deficiency in *csf1ra* (Kottler et al., 2013), which suggests that *Csf1ra*
500 and *Csf1rb* have functionally diverged from each other in the guppy. *Csf1ra* has been
501 mapped on Guppy autosomal LG 10 (Tripathi et al. 2008).

502 European Blau is also known as Dunkel in Asia. *Csf1ra* activity is required for the
503 dispersal or differentiation of male-specific xanthophores (Kottler et al, 2013). In
504 homozygous condition it is epistatic to wild type genes for red and yellow; major red and
505 yellow color pigments are removed from the body. Certain red color pigments may be
506 present in finnage, and to a lesser degree in the body. Reflective qualities are reduced.
507 Ectopic melanophores may be removed, while basal level melanophores such as are
508 found in Half Black (Nill) are only slightly reduced. "The salient feature of the *csf1ra*
509 mutant males was the absence of all orange traits, with concomitant severe changes in
510 black ornaments" (Kottler et al, 2013). Snakeskin patterns degrade in homozygous
511 expression. The purple (violet) sheen found above the lateral line of both males and
512 females is removed. There is minimal finnage reduction.
513

514 **Additional Autosomal Genes Referred To**

515 **Pink** (*p*, Luckman 1990; Förster 1993; *pi* Kempkes 2007) Recessive. Removal of orange
516 erythrophores in body resulting in a "yellow-orange" cast in finnage. Homozygous reduction
517 of Nill melanophores and increase in MBAG. Removes blue iridophores. Reduces size of
518 finnage. Pb modification: Orange spotting is converted to pinkish-purple. Collected yellow
519 pigment cells are removed, but not Clustered Mg. Body color may be modified to violet-
520 blue.
521

522 **Ivory** (*I*, Tsutsui, Y 1997) Autosomal Dominant. Heterozygous suppression of
523 erythrophores (red color). Homozygous suppression of xantho-erythrophores (yellow-red
524 color), with reduction in fin size. Possible differences in melanophore modifications in
525 heterozygous vs homozygous states. Resulting in a "white" appearance. II (homozygous),
526 Ii (heterozygous) and ii (non-Ivory). Pb modification: Previous orange spotting is removed
527 by Ivory. Underlying iridophores and leucophores converted to light pinkish-purple.
528

529 **Magenta** (*M*, undescribed) Autosomal Dominant. Proliferation of red color pigment when
530 present and an increase of violet-blue iridophore structural color. Converts yellow color
531 pigment cells (xanthophores) to red erythrophores), though Metal Gold (Mg) may remain.
532 Concentrates black melanophores. There is a reduction in fin size. Pb modification: Orange
533 spotting is converted to pinkish-purple. Collected yellow pigment cells are removed, but not
534 Clustered Mg.. Converts orange to red and deepens violet blue coloration.
535

536 **Zebrinus** (*Ze*, Winge 1927) Autosomal Dominant. Color Character; Barred pattern of
537 vertical stripes on the peduncle, viz. 2-5, generally 3 dark pigment stripes. Effect
538 resembles that of Tigrinus gene, but is as a rule more pronounced. ZeZe (homozygous),
539 Zeze (heterozygous) and zeze (non-Zebrinus). Pb modification: No direct effect on barring
540 pattern. Overlaying orange spotting is converted to pinkish-purple. Collected yellow
541 pigment cells are removed, but not Clustered Mg.
542

543 **Major Sex-linked Traits Referenced**

544 **Coral Red** (*Co*, undescribed) Y-linked. Red color pigment shoulder pattern. Linked in
545 complex with Ds. Probably a Full Body modifier. It originated out of Vienna Emerald Green
546 Ds. Pb modification: Proliferation of violet structural color. Orange spotting is converted to
547 pinkish-purple. Collected yellow pigment cells are removed, but not clustered Mg.
548

549 **Grass** (*Gra*, Tsutsui, Y. 1997; Iwaski, N. 1989) X and/or Y-linked dominant. The Grass
550 phenotype is a highly variable random "fine dot" circular melanophore pattern in finnage.
551 Primarily limited to caudal ornamentation, with limited dorsal influence. Often associated
552 with "Nike Melanophore Stripe" body pattern. Variegation shape is dependent upon in-
553 breeding co-efficient. Color pigments can be added. "Glass Grass" genotype is similar to
554 Multi with a translucent background and color pigments. "Grass Grass" genotype is often
555 linked in complex with sex-linked xantho-erythrophore color pigment spots. Pb
556 Modification: Some orange spotting is converted to pinkish-purple. Collected yellow
557 pigment cells are removed, but not Clustered Mg. Xanthophore removal may reveal white
558 leucophores if present.

559
560 **Moscow Blau Additional Gene** (*MBAG*, *undescribed*) X-linked dominant. Half body pattern
561 expressing motile black mediating moderate & translucent melanin development over entire
562 body area posterior to dorsal fin, and in caudal peduncle. Other posterior peduncle color
563 patterns may be nearly or wholly obscured. Early Russian MBAG strains, in addition to NiII,
564 may have been identified as "Tuxedo; i.e. HalfBlack" (Pg. 58, Iwasaki 1989). Pb
565 modification: Orange spotting is converted to pinkish-purple. Collected yellow pigment cells
566 are removed, but not Clustered Mg. Peduncle may take on violet-blue reflective coloration.

567 **Mosaic** (*Mo*, Khoo and Phang 1999b) X-linked dominant. The Mosaic phenotype is a highly
568 variable random "large spot" crescent shaped melanophore pattern in finnage. Primarily
569 limited to caudal ornamentation, with limited dorsal influence. Variegation shape is
570 dependent upon in-breeding co-efficient. Normally associated with erythrophore color
571 pigment (carotenoid and/or pteridine). Pb modification: Some orange spotting in the body
572 is converted to pinkish-purple. Collected yellow pigment cells are removed, but not
573 Clustered Mg. Xanthophore removal may reveal white leucophores if present. Dark Red
574 Caudal pigment is generally not modified.

575 **Multi** (--, *undescribed*) X-linked dominant. The Multi phenotype is a highly variable random
576 "fine dot" circular melanophore pattern in finnage. Primarily limited to caudal
577 ornamentation, with limited dorsal influence. Variegation shape is dependent upon in-
578 breeding co-efficient. Color pigments can be added. Not linked with erythrophore color
579 pigment (carotenoid and/or pteridine) spots. This must be added through outcrossing.
580 Little or no effect on existing body color or pattern. Pb modification: Some orange spotting
581 in the body is converted to pinkish-purple. Collected yellow pigment cells are removed, but
582 not Clustered Mg. Xanthophore removal may reveal white leucophores if present. Dark Red
583 Caudal pigment is generally not modified.

584
585 **Moscow** (*Mw*, Kempkes 2007) Y-linked. Blue iridophore shoulder pattern. Likely a Full
586 Body modifier. Color variation with addition or removal of xantho-erythrophores. Pb
587 modification: Orange spotting is converted to pinkish-purple. Collected yellow pigment cells
588 are removed, but not Clustered Mg. Body color is modified to violet-blue.

589
590 **Variegation** (*Var*, Khoo and Phang 1999). (See Grass, Mosaic, Multi) X and / or Y-linked
591 dominant gene. Inheritance of variegated tail patterns appears to be determined by a
592 single locus on the X and Y chromosomes.

593 The gene study of Variegation focused on variable random "large spot" shaped
594 melanophore pattern in the caudal, though specimens exhibited similar dorsal pattern.
595 Variegation shape is dependent upon in-breeding co-efficient. Color pigments (xantho-
596 erythrophores) were not linked. Pb modification: Some orange spotting in the body is
597 converted to pinkish-purple. Collected yellow pigment cells are removed, but not Clustered
598 Mg. Xanthophore removal may reveal white leucophores if present. Dark Red Caudal
599 pigment is generally not modified.

600
601 **Nigrocaudatus** (*Nil*, Nybelin 1947 and *NiII*, Dzwillo 1959) X and/or Y-linked dominant
602 gene. Full body modifier, epistatic to many other genes in outcrosses. Pb modification:
603 Orange spotting is converted to pinkish-purple. Collected yellow pigment cells are removed,
604 but not Clustered Mg.

605
606 **Schimmelpennig Platinum** (*Sc*); **Buxeus** (Kempkes 2007). Y-linked dominant gene.
607 Silver-Blue iridophore shoulder pattern with Metal Gold (*Mg*) overlay. Probably a Full Body
608 modifier. Linked in complex with Ds. Originated out of Vienna Emerald Green Ds. Pb
609 modification: Orange spotting is converted to pinkish-purple. Collected yellow pigment cells
610 are removed, but not Clustered Mg.

611
SUMMARY

612 The newly described gene Purple Body and prior described genes Albino, Blond, Golden,
613 Asian Blau, and European Blau each limits or otherwise reduces the normal expression of
614 chromatophores found in "wild-type" Grey. When they are combined together and with
615 other frequently used color genes, new phenotypes are produced which are useful to
616 Pedigree Guppy Breeders and Commercial Farmers alike. Their basic effects are of interest
617 to geneticists, biochemists and molecular biologists.

618
Photo Imaging

619 Photos by author(s) were taken with a Fujifilm FinePix HS25EXR; settings Macro, AF:
620 center, Auto Focus: continuous, varying Exposure Compensation, Image Size 16:9, Image
621 Quality: Fine, ISO: 200, Film Simulation: Astia/Soft, White Balance: 0, Tone: STD, Dynamic
622 Range: 200, Sharpness: STD, Noise Reduction: High, Intelligent Sharpness: On. Lens:
623 Fujinon 30x Optical Zoom. Flash: External mounted EF-42 Slave Flash; settings at EV: 0.0,
624 35mm, PR1/1, Flash: -2/3. Photos cropped or brightness adjusted when needed with
625 Microsoft Office 2010 Picture Manager and Adobe Photoshop CS5. All photos by author(s),
626 unless otherwise noted.

627
Ethics Statement

628 No specimens were euthanized or harmed in this study.

629
Competing Interests and Funding

630 The authors declare that they have no competing interests. Senior author is a member
631 of the Editorial Board for Poeciliid Research; International Journal of the Bioflux Society, and
632 requested non-affiliated independent peer review volunteers.

633 The authors received no funding for this work.

634
Notes

635 This publication is number three (3) of four (4) by Bias and Squire in the study of Purple
636 Body (*Pb*) in *Poecilia reticulata*:

- 637
638 1. The Cellular Expression and Genetics of an Established Polymorphism in *Poecilia*
639 *reticulata*; "Purple Body, (*Pb*)" is an Autosomal Dominant Gene,
640 2. The Cellular Expression and Genetics of Purple Body (*Pb*) in *Poecilia reticulata*, and its
641 Interactions with Asian Blau (*Ab*) and Blond (*bb*) under Reflected and Transmitted Light,
642 3. The Cellular Expression and Genetics of Purple Body (*Pb*) in the Ocular Media of the
643 Guppy *Poecilia reticulata*,

650 4. The Phenotypic Expression of Purple Body (*Pb*) in Domestic Guppy Strains of *Poecilia*
651 *reticulata*.

652

653 Acknowledgements

654 To my best friend and wife Deana Bias, for her support and persistence over the last
655 several years in this four part study... To my co-author and dear friend Rick Squire for his
656 patience as a mentor... To those Domestic Breeders who willingly provided additionally
657 needed pedigree strains and study populations for completion of this paper...

658

659 References

- 660 1. Bias, A. S. and Groenewegen, C. A. *Poecilia reticulata*: Domestic Breeder Trait Matrix
661 Reference Guide (2016). 1st Edition, *with periodic updates*; 2016.12.08. Available from:
662 https://www.academia.edu/29928596/Poecilia_reticulata_Domestic_Breeder_Trait_Matri
663 x_Reference_Guide (last checked 1.21.2017).
- 664 2. Bias, A. S. Working With Autosomal Genes for Color and Pattern (2015): A Domestic
665 Guppy Breeder's best friend and often worst nightmare... Presented Sept. 5, 2015 to
666 attendees of the 18th World Guppy Contest held in Tampa, Florida, USA. Available from:
667 https://www.academia.edu/15488221/Working_With_Autosomal_Genes_for_Color_and_
668 Pattern_A_Domestic_Guppy_Breeders_best_friend_andOften_worst_nightmare_ (last
669 checked 2.1.17).
- 670 3. Bias, A.S. and Squire, R. D. (2017a, *forthcoming*). The Cellular Expression and Genetics
671 of an Established Polymorphism in *Poecilia reticulata*; "Purple Body, *Pb*" is an Autosomal
672 Dominant Gene.
- 673 4. Bias, A.S. and Squire, R. D. (2017b, *forthcoming*). The Cellular Expression and Genetics
674 of Purple Body (*Pb*) in *Poecilia reticulata*, and its Interactions with Asian Blau (*Ab*) and
675 Blond (*bb*) under Reflected and Transmitted Light.
- 676 5. Bias, A.S. and Squire, R. D. (2017c, *forthcoming*). The Cellular Expression and Genetics
677 of Purple Body (*Pb*) in the Ocular Media of the Guppy *Poecilia reticulata*.
- 678 6. Dzwillo, M. (1959). Genetische Untersuchungen an domestizierten Stämmen von
679 *Lebistes reticulatus* Peters. *Mitt Hamburg Zool Mus Inst*, 57, 143-186.
- 680 7. Förster, W. Eine weitere Überraschung beim Pink-Guppy (1992). DGLZ-Rundschau 15,
681 31-32. Deutsche Gesellschaft für Lebengebärende Zahnkarpfen e.V., Editor; 1992.
682 Available from: <https://dglz.de/index.php/FileDownload/226-DGLZ-2-1992-pdf/> (last
683 checked 2.8.17).
- 684 8. Goodrich, H. B., Josephson, N. D., Trinkaus, J. P., & Slate, J. M. (1944). The cellular
685 expression and genetics of two new genes in *Lebistes reticulatus*. *Genetics*, 29(6), 584.
- 686 9. Haskins, C. P., & Haskins, E. F. (1948). Albinism, a semi-lethal autosomal mutation in
687 *Lebistes reticulatus*. *Heredity*, 2(Pt 2), 251.
- 688 10. Iwasaki, N (1989). Guppies: Fancy Strains and How to Produce Them. 1st ed., Text:
689 English (translation). T.F.H. Publications, Inc.; 1989. Page 58. ISBN-10: 0866227024.
- 690 11. Kempkes M. (2007). New colour genes in the guppy, *Poecilia reticulata* (Peters,
691 1859). *Bulletin of Fish Biology Volume*, 9(1/2), 93-97.
- 692 12. Khoo, G., Lim, T. M., Chan, W. K., & Phang, V. P. (1999). Genetic basis of the
693 variegated tail pattern in the guppy, *Poecilia reticulata*. *Zoological science*, 16(3), 431-
694 437.
- 695 13. Kottler, V. A., Fadeev, A., Weigel, D., & Dreyer, C. (2013). Pigment pattern formation in
696 the guppy, *Poecilia reticulata*, involves the Kita and Csf1ra receptor tyrosine
697 kinases. *Genetics*, 194(3), 631-646.
- 698 14. Kottler, V. A., Künstner, A., Koch, I., Flötenmeyer, M., Langenecker, T., Hoffmann, M.,
699 ... & Dreyer, C. (2015). Adenylate cyclase 5 is required for melanophore and male
700 pattern development in the guppy (*Poecilia reticulata*). *Pigment cell & melanoma*
701 *research*, 28(5), 545-558.

- 702 15. Luckmann, H. (1990). Die Grundfarbe des Pink-Guppys. DGLZ-Rundschau 17, 4-8.
- 703 Deutsche Gesellschaft für Lebengebärende Zahnkarpfen e.V., Editor; 1990. Available
- 704 from: <https://dglz.de/index.php/FileDownload/217-DGLZ-2-1990-pdf/> (last checked
- 705 2.8.17).
- 706 16. Nybelin, O. (1947). Ett fall av X-bunden nedärnvning hos *Lebistes reticulatus*
- 707 (Peters). *Zoologiska Bidrag fran Uppsala*, 25, 448-454.
- 708 17. Tripathi, N., Hoffmann, M., & Dreyer, C. (2008). Natural variation of male ornamental
- 709 traits of the guppy, *Poecilia reticulata*. *Zebrafish*, 5(4), 265-278.
- 710 18. Tsutsui, Y. (2006) 筒井良樹. グッピーの軌跡. (編集)
- 711 月刊アクアライフ ; 2006, ページ244、268—269、287、308—309。[Translation: The Trail
- 712 of the Guppy. Aqualife monthly. 2006. Pages 244, 268-269, 287, 308-309.] ISBN 4-
- 713 89512-544-0.
- 714 19. Winge, Ö. (1927). The location of eighteen genes in *Lebistes reticulatus*. *Journal of*
- 715 *Genetics*, 18(1), 1-43.